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Abstract—Networks-on-Chip (NoCs) are increasingly used in
many-core architectures. ORION2.0 (see Ref [1] Kahng etal.,
Proc. DATE, 2009, pp. 423–428) is a widely adopted NoC power
and area estimation tool, but its estimation models can have large
errors (up to 185%) versus actual implementations. We present
ORION3.0, an open-source tool whose parametric and non-
parametric modeling methodologies fundamentally differ from
ORION2.0 logic template-based approaches in that the estimation
models are derived from actual physical implementation data.
When compared with actual implementations, ORION3.0 models
achieve average estimation errors of no more than 9.3% across
microarchitecture, implementation, and operational parameters
as well as multiple router RTL generators. A comprehensive suite
of these methodologies has been implemented in ORION3.0 (see
Ref [2] Available online: http://vlsicad.ucsd.edu/ORION3/.

Index Terms—Metamodeling, networks-on-chip (NoCs), regres-
sion.

I. INTRODUCTION

N ETWORKS-ON-CHIP (NoCs) have proven to be highly
scalable, low-latency interconnection fabrics in the era of

many-core architectures. Because of their growing importance,
NoCs must be optimized for latency and power [3]. To facilitate
early design-space exploration, accurate NoC power and area
estimation tools are required.
We describe ORION3.0, a comprehensive NoC router esti-

mation tool that embodies both parametric and nonparametric
models. We include new models of router component blocks
using parametric [4] and nonparametric modeling [5] method-
ologies that fundamentally differ from ORION2.0 [1] in that the
estimationmodels are derived from post-place-and-route (P&R)
data that correspond to a given RTL generator and target cell li-
brary. Within this paradigm, we describe two approaches that
are implemented in ORION3.0.
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The first approach is based on parametric modeling. Our
work in [4] makes a substantial departure from the ORION2.0
approach in that no logic template is assumed for any router
component block. Instead, for each component block in the
router RTL, appropriate parametric models are derived from
post-synthesis netlists by observing how instance counts
change with microarchitectural, implementation, and opera-
tional parameters. We call these models ORION_NEW. We
perform least-squares regression (LSQR) with actual post-P&R
power and area data to refine these ORION_NEW models.
The resulting parametric models achieve worst-case errors
significantly better than those of ORION2.0. This parametric
modeling methodology enables a separation of concerns and
skillsets: it does not require the architect or developer to un-
derstand how the architectural components are implemented
on chip. Rather, the methodology relies on a one-time charac-
terization of post-synthesis data to derive parametric models
of component blocks, and automatic fitting of these models to
post-P&R data using parametric regression.
The second approach is based on nonparametric modeling.

Estimation models are again derived from post-P&R power and
area data that correspond to a given RTL generator and target
cell library. The nonparametric modeling approach can auto-
matically derive accurate estimation models based on a sample
set of post-P&R results. ORION3.0 extends ideas from [6][7]
by incorporating four metamodeling techniques for automatic
model generation: radial basis functions (RBF), kriging (KG),
multivariate adaptive regression splines (MARS) with linear
and cubic splines, and support vector machine (SVM) regres-
sion. The nonparametric modeling approach does not require
the architect or developer to understand how architectural com-
ponents are physically implemented.
Often, architects may perform design-space exploration to

understand the impact of instance counts, area, and power for
a future technology in which technology libraries are not avail-
able and nonparametric models hence cannot be derived. Para-
metric models are useful at this context to provide ballpark in-
sights on a block’s size and power. Architects may then provide
feedback to library teams to design complex cells or to constrain
area, power, timing of the cells in the future technology libraries.
For backward compatibility, ORION3.0 also includes the

logic template-based models that comprise ORION2.0. Based
on modeling accuracy requirements, and availability of training
and testing data for regression, users have the flexibility to
choose appropriate modeling methodologies.1

1For example, when training and testing data for a technology or tool flow
is not available, users may use ORION_NEW models with scaled technology
parameters.
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Fig. 1. Router architecture [3].

Fig. 2. Poor estimations by ORION2.0 [1]. (a) Power and (b) instance counts of
Netmaker and Stanford NoC versus ORION2.0 at 65 nm as a function of #ports.

Our main contributions are as follows:
1) We describe a new parametric modeling methodology that

derives accurate parametric models from post-synthesis
netlists by observing how instance counts change with mi-
croarchitectural, implementation, and operational parame-
ters. Use of post-synthesis netlists accurately captures con-
tributions from both control and data paths.

2) We demonstrate that nonparametric regression techniques
(RBF, KG, MARS and SVM) can yield highly accurate
(worst-case error ) NoC power and area estimates.

3) ORION3.0 is available on the web for download. Over 380
downloads have been made from industry and academia
since availability commenced in February 2013.

The remainder of this letter is organized as follows.
Section II presents ORION_NEW models and our parametric
modeling methodology. Section III provides a description of
our nonparametric modeling methodology. Section IV de-
scribes the ORION3.0 distribution itself, including software
architecture and extensibility with user-defined models, as well
as training and testing datasets. Section V concludes this work.

II. PARAMETRIC MODELING

Fig. 1 shows an example of a modern on-chip network
router with input and output buffers, switch and virtual channel
arbiter, and crossbar. ORION2.0 uses logic template models
for these router blocks. However, these models can be inaccu-
rate because of mismatches between the actual RTL and the
templates assumed. Moreover, typical design flows involve
sophisticated design steps that have complex interactions
among them, making their effects difficult to characterize.
Fig. 2(a) and (b) show power and instance-count estimation
errors at 65 nm for ORION2.0 relative to two router RTL
generators (Netmaker [8] from Cambridge and the Stanford
NoC router [9]), as a function of the number of input ports in
the router. The maximum errors are greater than 100% and

1000%, respectively. For these two RTL generators, [4] reports
significant improvements in power, area, and instance-count
estimation using ORION_NEW models.

A. Model Enhancements
The ORION_NEW router block models in ORION3.0 model

the number of instances (or gates) in each router block; our
studies show this to be required for accurate estimations of area
and power. The microarchitecture parameters used are #Ports
( ), #VCs ( ), #Buffers ( ), and Flit-width ( ). The constant
factors in instance-count models of the router blocks are derived
by linear regression with post-synthesis netlists.
Crossbar (XBAR) Model. ORION_NEW models compre-

hend modern router RTL implementations which use smaller
crossbars instead of traditional matrix [3] and multiplexer tree
[1] implementation options in ORION2.0. Hence, the total
number of such MUXes required is .
Switch and VC Arbiter (SWVC) Model. ORION_NEW re-

moves the default overhead factor of 30% used by ORION2.0
based on our analyses. Instance-count in SWVC is modeled as

. The constant factor 9 arises because
six 2-input NOR gates, two INVerters, and one D-FlipFlop are
used to generate each grant signal.
Input Buffer (InBUF) Model. ORION_NEW models take

into account control signals and housekeeping logic which
are required to decode flits and manage VCs. ORION2.0
models lack these components and are hence inaccurate. In
ORION_NEW, FIFO buffers are modeled as , and
control signals and housekeeping logic are modeled as

.
Output Buffer (OutBUF) Model. ORION_NEW models

take into account hybrid output buffer implementations in
modern router RTLs as well as control signals per port and VC
associated with each buffer. Output buffers are thus modeled
differently from input buffers, with OutBUF given as

.
Clock and Control Logic (CLKCTRL) Model. Unlike

ORION2.0, ORION_NEW models the clock buffers and
routing resources; these are modeled as 2% of the sum of in-
stances in the SWVC, InBUF and OutBUF component blocks.
Frequency Derating Model. ORION2.0 models ignore im-

plementation parameters such as clock frequency, which results
in large estimation errors at high frequencies. We first find the
frequency below which instance counts change by less than
1%. We derate instance counts by a multiplier that
is based on this frequency as

.

B. Modeling Methodology
Fig. 3 shows our flow to derive new parametric models,

ORION_NEW, from post-synthesis netlists by linear regres-
sion2 and a subsequent refinement process that automatically
fits the models to post-P&R area, power, and instance-count
data. We use the Netmaker and the Stanford NoC router RTL
generators, and a range of values of microarchitecture pa-
rameters ( , , and ) and implementation parameters

2We determine the parametric form of each router block and the constant fac-
tors by observing how instance count changes as , , , , clock frequency,
and technology node vary.



KAHNG et al.: ORION3.0: A COMPREHENSIVE NOC ROUTER ESTIMATION TOOL 43

Fig. 3. Development of ORION_NEW and fitted models using post-P&R data.

(clock frequency and technology node) to configure the router.
We synthesize the router RTLs using Synopsys Design Com-
piler vI-2013.12-SP2 (DC) [10] and Cadence RTL Compiler
vEDI13.1 (RC) [11], with options to preserve module hierarchy
to enable us to analyze each router component block. We derive
ORION_NEW models from analysis of post-synthesis netlists
of the component blocks.
To refine these models, we generate post-P&R power and

area data. We place and route the synthesized netlists using Ca-
dence SOC Encounter vEDI13.1 (SOCE) with die utilization of
0.75 and die aspect ratio of 1.0. To account for process varia-
tion, we perform multimode multicorner P&R by defining two
scenarios for both setup and hold analyses. The nominal sce-
nario uses {ss, 0.85 V, 125C}3 and {ff, 1.05 V, 125C} for setup
and hold corners respectively, and the overdrive scenario uses
{ss, 1.10 V, 125C} and {ff, 1.30 V, 125C} for setup and hold
corners, respectively. With each scenario, we use foundry li-
braries for 65 and 45 nm. To run power analysis based on the
post-P&R netlist, SPEF [10] and SDC [12], we use Synopsys
PrimeTime-PX vH-2013.06-SP3-6 (PT-PX) [10]. To account for
the effects of input toggle rates, we use the set_switching_ac-
tivity command to annotate switching activity factor values from
0.05 to 1.0 in steps of 0.05 and the percentage of time the signal
is at logic 1 from 0.1 to 1.0 in steps of 0.1.4 Finally, we use
the MATLAB vR2012b function lsqnonneg to fit the models to
post-P&R data. We normalize all the input parameters using
z-scoring, and randomly select 35% (respectively, 15%) of the
data points to train (respectively, validate) the model. We then
use the remaining 50% of the data points to test the model and
report average, maximum estimation errors.

C. Results

Fig. 4(a) and (b), respectively, compare power and area esti-
mation errors of ORION2.0 to those of ORION_NEW at 45 and
65 nm. Both maximum and average errors are substantially im-
proved. The ORION_NEW estimates are very close to actual
implementation (average error of 9.3% in estimating Netmaker
power at 45 nm) and are robust across multiple microarchitec-
ture, implementation parameters, and router RTLs. Compared
to [4], we improve average error in area (respectively, power)
estimation from 9.8% to 9.3% (respectively, 10.2% to 6.1%).

3We represent process, voltage, and temperature corners as three tu-
ples—{process, voltage, temperature}. Our corners consist of two process
conditions (ss, ff), four voltages (0.85, 1.05, 1.10, and 1.30 V) and one
temperature (125C).

4Specific NoC routing algorithms affect the switching activity factors at the
inputs of the router. Therefore, we do not model different routing algorithms as
they are subsumed by the input switching activity factors.

Fig. 4. Regression fit versus ORION2.0. (a) area and (b) power estimation er-
rors.

Fig. 5. Development of nonparametric regressionmodels using post-P&R data.

III. NON-PARAMETRIC MODELING

Non-parametric regression techniques provide another ap-
proach to estimate NoC power and area [6][7]. The models
determine the interactions between all input variables and
how they affect the output (or response). This alleviates the
effort needed to model architecture-level implementations of
NoCs. At the same time, nonparametric regression approaches
are scalable across multiple router RTLs, technology libraries
and commercial tool flows. In ORION3.0, we implement
four popular nonparametric regression or metamodeling tech-
niques—RBF, KG, MARS, and SVM. Detailed descriptions of
these techniques are in [13].

A. Modeling Methodology
We derive NoC area and power models by performing

nonparametric fit of post-P&R data using 65 and 45 nm tech-
nology libraries. Fig. 5 shows our flow to derive nonparametric
regression models. We apply the methodology described in
Section II-B to run synthesis and multimode multicorner P&R,
perform power simulations by annotating activity factors, and
generate datasets for modeling.

B. Results
We use 256 data points of post-P&R power and area values

using 45 nm and 65 nm technology libraries to generate training
and test data points. The input variables to all the models are P,
V, B, and and the responses are post-P&R power and area.
We use two training set sizes—“sparse and restricted” with 50
data points that omit higher values of the microarchitectural pa-
rameters,5 and “sparse only” with 64 data points that are sam-
pled using Latin Hypercube Sampling [14]. The “sparse and re-
stricted” set allows us to assess how well the models generalize

5More precisely, the resulting training sets omit all values of , or of
, or of , or of .
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Fig. 6. Estimation errors in (a) area and (b) power with “sparse and restricted”
training sets (i.e., 50 data points for training).

Fig. 7. Estimation errors in (a) area and (b) power with “sparse only” training
sets (i.e., 64 data points for training).

in estimating area and power for input parameters which are
beyond the range of values used for training. In each experi-
ment, model generation takes around 3 seconds and response
estimation takes around 1.88 seconds.6 We apply z-scoring to
normalize all the input parameters and randomly select 15% of
the remaining data points for validation. We perform five-fold
cross-validation [13] and vary the hyperparameters [13] for each
technique until our average errors are less than 12%. We repeat
these experiments 30 times for each training set size, and report
the averages of all the error values across the 30 trials.
Fig. 6(a) and (b) respectively compare area and power esti-

mation errors across all modeling techniques at 45 and 65 nm
for the “sparse and restricted” training sets. The average er-
rors are in both area and power. RBF generally per-
forms better than other techniques across technologies in both
area and power estimation. RBF can be up to more accu-
rate than KG, MARS and SVM. Fig. 7(a) and (b) show sim-
ilar plots for the “sparse only” training sets. Compared to [5],
we improve average error in area (respectively, power) estima-
tion from 8.7% to 6.7% (respectively, 8.5% to 3.8%) with the
“sparse only” training sets. Again, RBF is more accurate than
other techniques. Across all training set sizes used in our ex-
periments, area and power estimation errors are the smallest for
RBF and are the largest for SVM.7

IV. ORION3.0 DISTRIBUTION

We now describe ORION3.0 software architecture, extensi-
bility with new models and training/testing datasets, and details
of the ORION3.0 software distribution.

6Wemeasure execution times on a six-core Intel Xeon E5-2640 2.5 GHz plat-
form.

7We do not apply parametric modeling to certain blocks and nonparametric
modeling to other blocks. We model the entire router using nonparametric mod-
eling to generalize these models across router implementations. Further, incor-
rect parametric models can lead to large estimation errors. Our experimental
results show that an architecture-specific model of the crossbar can lead to area
and power estimation errors of up to 61% and 53% respectively.

Fig. 8. Software architecture of ORION3.0.

A. Software Architecture and Extensibility
ORION3.0 uses a modular software architecture and is

written in andMATLAB vR2012b. Fig. 8 shows the high-level
software architecture, how the router configuration is read by
the tool and how models are invoked. ORION3.0 offers com-
mand-line options for the user to choose: 1) ORION3.0 versus
ORION2.0 models; 2) specific ORION3.0 modeling techniques
(basic, lsqr, rbf, kg, mars, svm); and 3) training and/or testing
datasets when any of {lsqr, rbf, kg, mars, svm} is used.
As with ORION2.0, users can configure microarchitecture

parameters such as flit-width, #input and output buffers, #vir-
tual channels, #pipeline stages, type of crossbar, #ports, etc.
in the SIM_port.h file. These parameters are used with either
the ORION2.0 models or the ORION3.0 basic model; the latter
refers to ORION_NEW (cf. Section II), which is used by default
when no options are specified by the user. Users may specify
implementation and operational parameters such as technology
library, size of MUXes in the crossbar, and the input load on
the router from the link. We have updated the technology files
with accurate leakage and internal power data from a leading
foundry’s 45GS libraries for all cell types used in modeling, and
are in the process of calibrating foundry nm library models.
All models report area in m , power in mW, and energy in J.
When choosing any of lsqr, rbf, kg, mars, svm methods, a

user may optionally provide training and testing data points.
ORION3.0 performs basic validation of such user data to ensure
that it can be converted to a nonsingular matrix. In the absence of
user-provided data, the tool uses default training and testing data
points based on the technology configured in the SIM_port.h
file in the PARM_TECH_POINT field. Users may also develop
their own regression models in MATLAB: the ORION3.0 dis-
tribution provides a template shell script that executes the re-
gression model in MATLAB, and the shell script is called from
orion_router.c using the system method in .

B. Software Distribution
ORION3.0 is downloadable at http://vlsicad.ucsd.edu/

ORION3/ [2]. We provide academic MATLAB toolboxes for
RBF [15], KG [16], MARS [17], and SVM [18] under the
same copyright and license agreements as available in their
distributions. Doxygen-based documentation of all functions
and implemented structures is provided in the distribution.

V. CONCLUSION
Accurate modeling for NoC area and power estimation is

critical to successful early design-space exploration in the era
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of many-core computing. ORION2.0, while very popular, has
large errors versus actual implementation. This is because
there is often a mismatch between the actual router RTL and
the templates assumed. Also, typical design flows involve
sophisticated optimizations that are difficult to characterize. We
present ORION3.0, an open-source tool that incorporates com-
prehensive parametric and nonparametric modeling techniques
to accurately estimate NoC power and area. Our ORION_NEW
parametric models explicitly account for control and data
path resources. We further refine these parametric models by
least-squares regression (LSQR) on post-P&R data. ORION3.0
nonparametric models include four popular techniques—RBF,
KG, MARS, and SVM. Our studies show that these techniques
can be low-overhead and highly accurate in estimating NoC
power and area, with RBF being more accurate than the other
methods for sparse and restricted training sets. ORION3.0 is
now available for web download [2].
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